Copied to
clipboard

G = C33.7C32order 243 = 35

7th non-split extension by C33 of C32 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C33.7C32, C32.30He3, C32⋊C9.4C3, C3.8(He3.C3), 3-Sylow(J3), SmallGroup(243,9)

Series: Derived Chief Lower central Upper central Jennings

C1C33 — C33.7C32
C1C3C32C33C32⋊C9 — C33.7C32
C1C32C33 — C33.7C32
C1C32C33 — C33.7C32
C1C32C33 — C33.7C32

Generators and relations for C33.7C32
 G = < a,b,c,d,e | a3=b3=c3=1, d3=c-1, e3=b, ab=ba, ac=ca, dad-1=ab-1, eae-1=ac-1, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=ab-1c-1d >

9C3
3C32
3C32
3C32
3C32
9C9
9C9
9C9
9C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9

Smallest permutation representation of C33.7C32
On 81 points
Generators in S81
(2 48 78)(3 79 49)(5 51 81)(6 73 52)(8 54 75)(9 76 46)(10 13 16)(11 27 56)(12 63 22)(14 21 59)(15 57 25)(17 24 62)(18 60 19)(20 23 26)(28 43 67)(29 35 32)(30 72 42)(31 37 70)(33 66 45)(34 40 64)(36 69 39)(38 44 41)(55 58 61)(65 71 68)
(1 77 47)(2 78 48)(3 79 49)(4 80 50)(5 81 51)(6 73 52)(7 74 53)(8 75 54)(9 76 46)(10 58 23)(11 59 24)(12 60 25)(13 61 26)(14 62 27)(15 63 19)(16 55 20)(17 56 21)(18 57 22)(28 37 64)(29 38 65)(30 39 66)(31 40 67)(32 41 68)(33 42 69)(34 43 70)(35 44 71)(36 45 72)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 61 35 77 26 44 47 13 71)(2 24 72 78 11 36 48 59 45)(3 57 28 79 22 37 49 18 64)(4 55 29 80 20 38 50 16 65)(5 27 66 81 14 30 51 62 39)(6 60 31 73 25 40 52 12 67)(7 58 32 74 23 41 53 10 68)(8 21 69 75 17 33 54 56 42)(9 63 34 76 19 43 46 15 70)

G:=sub<Sym(81)| (2,48,78)(3,79,49)(5,51,81)(6,73,52)(8,54,75)(9,76,46)(10,13,16)(11,27,56)(12,63,22)(14,21,59)(15,57,25)(17,24,62)(18,60,19)(20,23,26)(28,43,67)(29,35,32)(30,72,42)(31,37,70)(33,66,45)(34,40,64)(36,69,39)(38,44,41)(55,58,61)(65,71,68), (1,77,47)(2,78,48)(3,79,49)(4,80,50)(5,81,51)(6,73,52)(7,74,53)(8,75,54)(9,76,46)(10,58,23)(11,59,24)(12,60,25)(13,61,26)(14,62,27)(15,63,19)(16,55,20)(17,56,21)(18,57,22)(28,37,64)(29,38,65)(30,39,66)(31,40,67)(32,41,68)(33,42,69)(34,43,70)(35,44,71)(36,45,72), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,61,35,77,26,44,47,13,71)(2,24,72,78,11,36,48,59,45)(3,57,28,79,22,37,49,18,64)(4,55,29,80,20,38,50,16,65)(5,27,66,81,14,30,51,62,39)(6,60,31,73,25,40,52,12,67)(7,58,32,74,23,41,53,10,68)(8,21,69,75,17,33,54,56,42)(9,63,34,76,19,43,46,15,70)>;

G:=Group( (2,48,78)(3,79,49)(5,51,81)(6,73,52)(8,54,75)(9,76,46)(10,13,16)(11,27,56)(12,63,22)(14,21,59)(15,57,25)(17,24,62)(18,60,19)(20,23,26)(28,43,67)(29,35,32)(30,72,42)(31,37,70)(33,66,45)(34,40,64)(36,69,39)(38,44,41)(55,58,61)(65,71,68), (1,77,47)(2,78,48)(3,79,49)(4,80,50)(5,81,51)(6,73,52)(7,74,53)(8,75,54)(9,76,46)(10,58,23)(11,59,24)(12,60,25)(13,61,26)(14,62,27)(15,63,19)(16,55,20)(17,56,21)(18,57,22)(28,37,64)(29,38,65)(30,39,66)(31,40,67)(32,41,68)(33,42,69)(34,43,70)(35,44,71)(36,45,72), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,61,35,77,26,44,47,13,71)(2,24,72,78,11,36,48,59,45)(3,57,28,79,22,37,49,18,64)(4,55,29,80,20,38,50,16,65)(5,27,66,81,14,30,51,62,39)(6,60,31,73,25,40,52,12,67)(7,58,32,74,23,41,53,10,68)(8,21,69,75,17,33,54,56,42)(9,63,34,76,19,43,46,15,70) );

G=PermutationGroup([[(2,48,78),(3,79,49),(5,51,81),(6,73,52),(8,54,75),(9,76,46),(10,13,16),(11,27,56),(12,63,22),(14,21,59),(15,57,25),(17,24,62),(18,60,19),(20,23,26),(28,43,67),(29,35,32),(30,72,42),(31,37,70),(33,66,45),(34,40,64),(36,69,39),(38,44,41),(55,58,61),(65,71,68)], [(1,77,47),(2,78,48),(3,79,49),(4,80,50),(5,81,51),(6,73,52),(7,74,53),(8,75,54),(9,76,46),(10,58,23),(11,59,24),(12,60,25),(13,61,26),(14,62,27),(15,63,19),(16,55,20),(17,56,21),(18,57,22),(28,37,64),(29,38,65),(30,39,66),(31,40,67),(32,41,68),(33,42,69),(34,43,70),(35,44,71),(36,45,72)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,61,35,77,26,44,47,13,71),(2,24,72,78,11,36,48,59,45),(3,57,28,79,22,37,49,18,64),(4,55,29,80,20,38,50,16,65),(5,27,66,81,14,30,51,62,39),(6,60,31,73,25,40,52,12,67),(7,58,32,74,23,41,53,10,68),(8,21,69,75,17,33,54,56,42),(9,63,34,76,19,43,46,15,70)]])

C33.7C32 is a maximal subgroup of   C322D9.C3  C32⋊C9.10S3

35 conjugacy classes

class 1 3A···3H3I3J9A···9X
order13···3339···9
size11···1999···9

35 irreducible representations

dim1133
type+
imageC1C3He3He3.C3
kernelC33.7C32C32⋊C9C32C3
# reps18224

Matrix representation of C33.7C32 in GL6(𝔽19)

100000
0110000
007000
000100
000570
00010011
,
1100000
0110000
0011000
0001100
0000110
0000011
,
100000
010000
001000
000700
000070
000007
,
010000
001000
100000
00011011
0000013
00015168
,
500000
050000
0017000
000560
0000141
0000130

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,5,10,0,0,0,0,7,0,0,0,0,0,0,11],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,15,0,0,0,0,0,16,0,0,0,11,13,8],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,17,0,0,0,0,0,0,5,0,0,0,0,0,6,14,13,0,0,0,0,1,0] >;

C33.7C32 in GAP, Magma, Sage, TeX

C_3^3._7C_3^2
% in TeX

G:=Group("C3^3.7C3^2");
// GroupNames label

G:=SmallGroup(243,9);
// by ID

G=gap.SmallGroup(243,9);
# by ID

G:=PCGroup([5,-3,3,-3,-3,3,810,121,96,542,457]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=1,d^3=c^-1,e^3=b,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,e*a*e^-1=a*c^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b^-1*c^-1*d>;
// generators/relations

Export

Subgroup lattice of C33.7C32 in TeX

׿
×
𝔽